Khi các đơn vị điện phẫu thuật tần số cao (ESU) hoạt động trên 1 MHz, công suất ký sinh trùng và cảm ứng của các thành phần kháng dẫn đến các đặc điểm tần số cao phức tạp,ảnh hưởng đến độ chính xác thử nghiệmBài báo này đề xuất một phương pháp bù đắp năng động dựa trên các đồng hồ LCR tần số cao hoặc các máy phân tích mạng cho các máy kiểm tra đơn vị điện phẫu thuật tần số cao.Bằng cách sử dụng đo lường cản thời gian thực, mô hình hóa năng động và thuật toán bù đắp thích nghi, phương pháp giải quyết các lỗi đo do tác dụng ký sinh trùng gây ra.Hệ thống tích hợp các thiết bị chính xác cao và các mô-đun xử lý thời gian thực để đạt được tính năng chính xác của hiệu suất ESUCác kết quả thử nghiệm cho thấy rằng, trong phạm vi 1 MHz đến 5 MHz, lỗi trở ngại được giảm từ 14,8% xuống còn 1,8%, và sai pha được giảm từ 9,8 độ xuống còn 0,8 độ.xác nhận hiệu quả và độ bền của phương phápCác nghiên cứu mở rộng khám phá tối ưu hóa thuật toán, thích nghi cho các dụng cụ chi phí thấp và ứng dụng trên phạm vi tần số rộng hơn.
Đơn vị phẫu thuật điện (ESU) là một thiết bị không thể thiếu trong phẫu thuật hiện đại, sử dụng năng lượng điện tần số cao để cắt, đông máu và cắt bỏ mô.Tần số hoạt động của nó thường dao động từ 1 MHz đến 5 MHz để giảm kích thích thần kinh cơ bắp và cải thiện hiệu quả truyền năng lượngTuy nhiên, ở tần số cao, tác động ký sinh của các thành phần kháng (như điện dung và cảm ứng) ảnh hưởng đáng kể đến các đặc điểm cản,làm cho các phương pháp thử nghiệm truyền thống không thể mô tả chính xác hiệu suất của ESUNhững tác dụng ký sinh trùng này không chỉ ảnh hưởng đến sự ổn định điện năng đầu ra mà còn có thể dẫn đến sự không chắc chắn trong việc cung cấp năng lượng trong phẫu thuật, làm tăng nguy cơ lâm sàng.
Các phương pháp thử nghiệm ESU truyền thống thường dựa trên hiệu chuẩn tĩnh, sử dụng tải cố định để đo.Năng lượng ký sinh trùng và cảm ứng thay đổi theo tần số, dẫn đến những thay đổi động trong trở kháng. hiệu chuẩn tĩnh không thể thích nghi với những thay đổi này, và lỗi đo có thể lên đến 15%.[2] Để giải quyết vấn đề này,bài báo này đề xuất một phương pháp bù đắp năng động dựa trên một đồng hồ LCR tần số cao hoặc máy phân tích mạngPhương pháp này bù đắp cho các hiệu ứng ký sinh trùng thông qua đo lường thời gian thực và thuật toán thích nghi để đảm bảo độ chính xác thử nghiệm.
Những đóng góp của bài báo này bao gồm:
Các phần sau sẽ giới thiệu chi tiết cơ sở lý thuyết, thực hiện phương pháp, xác minh thực nghiệm và hướng nghiên cứu trong tương lai.
Trong môi trường tần số cao, mô hình lý tưởng của các thành phần điện trở không còn áp dụng.Cp) và cảm ứng ký sinh trùng (Lp), với trở kháng tương đương:
Ở đâu?Zlà trở ngại phức tạp,Rlà điện trở danh nghĩa, ω là tần số góc, vàjlà đơn vị tưởng tượng.Lpvà công suất ký sinh trùngCpđược xác định bởi vật liệu thành phần, hình học và phương pháp kết nối.Lpvà
Sự đóng góp của là đáng kể, dẫn đến những thay đổi phi tuyến tính trong cường độ và pha trở ngại.
Ví dụ, đối với một điện trở 500 Ω danh nghĩa ở 5 MHz, giả sửLp= 10 nH vàCp= 5 pF, phần tưởng tượng của trở kháng là:
Thay thế giá trị số, ω = 2π × 5 × 106rad/s, chúng ta có thể có được:
Phần tưởng tượng này chỉ ra rằng các hiệu ứng ký sinh ảnh hưởng đáng kể đến trở ngại, gây ra độ lệch đo.
Mục tiêu của bù đắp năng động là trích xuất các thông số ký sinh trùng thông qua phép đo thời gian thực và khấu trừ các hiệu ứng của chúng từ trở ngại được đo.Máy đo LCR tính toán trở kháng bằng cách áp dụng tín hiệu AC có tần số được biết và đo chiều rộng và pha của tín hiệu phản hồiCác máy phân tích mạng phân tích đặc điểm phản xạ hoặc truyền tải bằng cách sử dụng các tham số S (các tham số phân tán), cung cấp dữ liệu cản chính xác hơn.Các thuật toán bù đắp năng động sử dụng dữ liệu đo này để xây dựng mô hình cản thời gian thực và điều chỉnh các hiệu ứng ký sinh trùng.
Kháng trở sau khi bù là:
Phương pháp này đòi hỏi thu thập dữ liệu chính xác cao và xử lý thuật toán nhanh để thích nghi với điều kiện hoạt động năng động của ESU.Kết hợp công nghệ lọc Kalman có thể cải thiện thêm độ chắc chắn của ước tính tham số và thích nghi với thay đổi tiếng ồn và tải [3].
Thiết kế hệ thống tích hợp các thành phần cốt lõi sau:
Hệ thống giao tiếp với đồng hồ LCR / máy phân tích mạng thông qua giao diện USB hoặc GPIB, đảm bảo truyền dữ liệu đáng tin cậy và độ trễ thấp.Thiết kế phần cứng kết hợp che chắn và nối đất cho tín hiệu tần số cao để giảm nhiễu bên ngoàiĐể tăng cường sự ổn định của hệ thống, một mô-đun bù đắp nhiệt độ đã được thêm vào để điều chỉnh các tác động của nhiệt độ môi trường xung quanh trên dụng cụ đo.
Các thuật toán bù đắp chuyển động được chia thành các bước sau:
Ở đâu?^klà trạng thái ước tính (R,Lp,Cp),Kklà lợi nhuận Kalman,zklà giá trị đo, vàHlà ma trận đo.
Để cải thiện hiệu quả thuật toán, biến đổi Fourier nhanh (FFT) được sử dụng để xử lý trước dữ liệu đo lường và giảm độ phức tạp tính toán.thuật toán hỗ trợ xử lý nhiều luồng để thực hiện tính toán thu thập dữ liệu và bù đắp song song.
Các thuật toán được tạo ra nguyên mẫu trong Python và sau đó tối ưu hóa và chuyển sang C để chạy trên một STM32F4.trong khi bộ phân tích mạng hỗ trợ độ phân giải tần số cao hơn (lên đến 10 MHz). Độ trễ xử lý của mô-đun bù đắp được giữ dưới 8,5 ms, đảm bảo hiệu suất thời gian thực.
Để phù hợp với các mô hình ESU khác nhau, hệ thống hỗ trợ quét đa tần số và điều chỉnh tham số tự động dựa trên cơ sở dữ liệu tính năng tải được đặt trước.một cơ chế phát hiện lỗi đã được thêm vàoKhi dữ liệu đo là bất thường (chẳng hạn như các thông số ký sinh trùng ngoài phạm vi dự kiến), hệ thống sẽ kích hoạt báo động và hiệu chuẩn lại.
Các thí nghiệm được thực hiện trong môi trường phòng thí nghiệm bằng cách sử dụng các thiết bị sau:
Trọng lượng thử nghiệm bao gồm các điện trở phim gốm và kim loại để mô phỏng các điều kiện tải khác nhau gặp phải trong phẫu thuật thực tế. tần số thử nghiệm là 1 MHz, 2 MHz, 3 MHz, 4 MHz,và 5 MHzNhiệt độ môi trường được kiểm soát ở 25 °C ± 2 °C và độ ẩm là 50% ± 10% để giảm thiểu sự can thiệp bên ngoài.
Các phép đo không bù cho thấy tác động của các tác động ký sinh gia tăng đáng kể theo tần số.Sau khi áp dụng bù đắp động, độ lệch trở giảm xuống còn 1,8% và sai pha giảm xuống còn 0,8 độ.
Thí nghiệm cũng kiểm tra sự ổn định của thuật toán dưới tải không lý tưởng (bao gồm cả dung lượng ký sinh trùng cao,Cp= 10pF). Sau khi bù đắp, lỗi được giữ trong phạm vi 2,4%.với độ lệch chuẩn nhỏ hơn 0.1%.
Bảng 1: Độ chính xác đo trước và sau khi bù
| tần số (MHz) | Lỗi cản không bù đắp (%) | Lỗi trở trở sau khi bù đắp (%) | Lỗi giai đoạn (Chi tiêu) |
|---|---|---|---|
| 1 | 4.9 | 0.7 | 0.4 |
| 2 | 7.5 | 0.9 | 0.5 |
| 3 | 9.8 | 1.2 | 0.6 |
| 4 | 12.2 | 1.5 | 0.7 |
| 5 | 14.8 | 1.8 | 0.8 |
Các thuật toán bù đắp có một tính toán phức tạp của O ((n), trong đó n là số tần số đo.đặc biệt là trong môi trường ồn ào (SNR = 20 dB). Thời gian phản ứng hệ thống tổng thể là 8,5 ms, đáp ứng các yêu cầu kiểm tra thời gian thực.phương pháp bù đắp động giảm thời gian đo bằng khoảng 30%, cải thiện hiệu quả thử nghiệm.
Phương pháp bù đắp năng động cải thiện đáng kể độ chính xác của thử nghiệm điện phẫu thuật tần số cao bằng cách xử lý tác dụng ký sinh trùng trong thời gian thực.So với hiệu chuẩn tĩnh truyền thống, phương pháp này có thể thích nghi với những thay đổi năng động trong tải và đặc biệt phù hợp với các đặc điểm cản phức tạp trong môi trường tần số cao.Sự kết hợp của các đồng hồ LCR và các máy phân tích mạng cung cấp khả năng đo lường bổ sung: Máy đo LCR phù hợp cho phép đo trở ngại nhanh, và các máy phân tích mạng hoạt động tốt trong phân tích thông số S tần số cao.việc áp dụng lọc Kalman cải thiện độ bền của thuật toán đối với tiếng ồn và thay đổi tải [4].
Mặc dù phương pháp này có hiệu quả, nhưng nó có những hạn chế sau:
Những cải tiến trong tương lai có thể được thực hiện theo những cách sau:
Bài báo này đề xuất một phương pháp bù đắp năng động dựa trên một đồng hồ LCR tần số cao hoặc máy phân tích mạng cho các phép đo chính xác trên 1 MHz cho các bộ kiểm tra điện phẫu thuật tần số cao.Thông qua mô hình cản thời gian thực và thuật toán bù đắp thích nghiCác kết quả thí nghiệm cho thấy rằng trong phạm vi 1 MHz đến 5 MHz,lỗi cản giảm từ 140,8% xuống còn 1,8%, và lỗi pha được giảm từ 9,8 độ xuống còn 0,8 độ, xác nhận hiệu quả và độ bền của phương pháp.
Nghiên cứu trong tương lai sẽ tập trung vào tối ưu hóa thuật toán, thích nghi dụng cụ chi phí thấp và ứng dụng trong phạm vi tần số rộng hơn.Tích hợp các công nghệ trí tuệ nhân tạo (như mô hình học máy) có thể cải thiện thêm độ chính xác ước tính tham số và tự động hóa hệ thốngPhương pháp này cung cấp một giải pháp đáng tin cậy cho kiểm tra đơn vị điện phẫu thuật tần số cao và có các ứng dụng lâm sàng và công nghiệp quan trọng.
Khi các đơn vị điện phẫu thuật tần số cao (ESU) hoạt động trên 1 MHz, công suất ký sinh trùng và cảm ứng của các thành phần kháng dẫn đến các đặc điểm tần số cao phức tạp,ảnh hưởng đến độ chính xác thử nghiệmBài báo này đề xuất một phương pháp bù đắp năng động dựa trên các đồng hồ LCR tần số cao hoặc các máy phân tích mạng cho các máy kiểm tra đơn vị điện phẫu thuật tần số cao.Bằng cách sử dụng đo lường cản thời gian thực, mô hình hóa năng động và thuật toán bù đắp thích nghi, phương pháp giải quyết các lỗi đo do tác dụng ký sinh trùng gây ra.Hệ thống tích hợp các thiết bị chính xác cao và các mô-đun xử lý thời gian thực để đạt được tính năng chính xác của hiệu suất ESUCác kết quả thử nghiệm cho thấy rằng, trong phạm vi 1 MHz đến 5 MHz, lỗi trở ngại được giảm từ 14,8% xuống còn 1,8%, và sai pha được giảm từ 9,8 độ xuống còn 0,8 độ.xác nhận hiệu quả và độ bền của phương phápCác nghiên cứu mở rộng khám phá tối ưu hóa thuật toán, thích nghi cho các dụng cụ chi phí thấp và ứng dụng trên phạm vi tần số rộng hơn.
Đơn vị phẫu thuật điện (ESU) là một thiết bị không thể thiếu trong phẫu thuật hiện đại, sử dụng năng lượng điện tần số cao để cắt, đông máu và cắt bỏ mô.Tần số hoạt động của nó thường dao động từ 1 MHz đến 5 MHz để giảm kích thích thần kinh cơ bắp và cải thiện hiệu quả truyền năng lượngTuy nhiên, ở tần số cao, tác động ký sinh của các thành phần kháng (như điện dung và cảm ứng) ảnh hưởng đáng kể đến các đặc điểm cản,làm cho các phương pháp thử nghiệm truyền thống không thể mô tả chính xác hiệu suất của ESUNhững tác dụng ký sinh trùng này không chỉ ảnh hưởng đến sự ổn định điện năng đầu ra mà còn có thể dẫn đến sự không chắc chắn trong việc cung cấp năng lượng trong phẫu thuật, làm tăng nguy cơ lâm sàng.
Các phương pháp thử nghiệm ESU truyền thống thường dựa trên hiệu chuẩn tĩnh, sử dụng tải cố định để đo.Năng lượng ký sinh trùng và cảm ứng thay đổi theo tần số, dẫn đến những thay đổi động trong trở kháng. hiệu chuẩn tĩnh không thể thích nghi với những thay đổi này, và lỗi đo có thể lên đến 15%.[2] Để giải quyết vấn đề này,bài báo này đề xuất một phương pháp bù đắp năng động dựa trên một đồng hồ LCR tần số cao hoặc máy phân tích mạngPhương pháp này bù đắp cho các hiệu ứng ký sinh trùng thông qua đo lường thời gian thực và thuật toán thích nghi để đảm bảo độ chính xác thử nghiệm.
Những đóng góp của bài báo này bao gồm:
Các phần sau sẽ giới thiệu chi tiết cơ sở lý thuyết, thực hiện phương pháp, xác minh thực nghiệm và hướng nghiên cứu trong tương lai.
Trong môi trường tần số cao, mô hình lý tưởng của các thành phần điện trở không còn áp dụng.Cp) và cảm ứng ký sinh trùng (Lp), với trở kháng tương đương:
Ở đâu?Zlà trở ngại phức tạp,Rlà điện trở danh nghĩa, ω là tần số góc, vàjlà đơn vị tưởng tượng.Lpvà công suất ký sinh trùngCpđược xác định bởi vật liệu thành phần, hình học và phương pháp kết nối.Lpvà
Sự đóng góp của là đáng kể, dẫn đến những thay đổi phi tuyến tính trong cường độ và pha trở ngại.
Ví dụ, đối với một điện trở 500 Ω danh nghĩa ở 5 MHz, giả sửLp= 10 nH vàCp= 5 pF, phần tưởng tượng của trở kháng là:
Thay thế giá trị số, ω = 2π × 5 × 106rad/s, chúng ta có thể có được:
Phần tưởng tượng này chỉ ra rằng các hiệu ứng ký sinh ảnh hưởng đáng kể đến trở ngại, gây ra độ lệch đo.
Mục tiêu của bù đắp năng động là trích xuất các thông số ký sinh trùng thông qua phép đo thời gian thực và khấu trừ các hiệu ứng của chúng từ trở ngại được đo.Máy đo LCR tính toán trở kháng bằng cách áp dụng tín hiệu AC có tần số được biết và đo chiều rộng và pha của tín hiệu phản hồiCác máy phân tích mạng phân tích đặc điểm phản xạ hoặc truyền tải bằng cách sử dụng các tham số S (các tham số phân tán), cung cấp dữ liệu cản chính xác hơn.Các thuật toán bù đắp năng động sử dụng dữ liệu đo này để xây dựng mô hình cản thời gian thực và điều chỉnh các hiệu ứng ký sinh trùng.
Kháng trở sau khi bù là:
Phương pháp này đòi hỏi thu thập dữ liệu chính xác cao và xử lý thuật toán nhanh để thích nghi với điều kiện hoạt động năng động của ESU.Kết hợp công nghệ lọc Kalman có thể cải thiện thêm độ chắc chắn của ước tính tham số và thích nghi với thay đổi tiếng ồn và tải [3].
Thiết kế hệ thống tích hợp các thành phần cốt lõi sau:
Hệ thống giao tiếp với đồng hồ LCR / máy phân tích mạng thông qua giao diện USB hoặc GPIB, đảm bảo truyền dữ liệu đáng tin cậy và độ trễ thấp.Thiết kế phần cứng kết hợp che chắn và nối đất cho tín hiệu tần số cao để giảm nhiễu bên ngoàiĐể tăng cường sự ổn định của hệ thống, một mô-đun bù đắp nhiệt độ đã được thêm vào để điều chỉnh các tác động của nhiệt độ môi trường xung quanh trên dụng cụ đo.
Các thuật toán bù đắp chuyển động được chia thành các bước sau:
Ở đâu?^klà trạng thái ước tính (R,Lp,Cp),Kklà lợi nhuận Kalman,zklà giá trị đo, vàHlà ma trận đo.
Để cải thiện hiệu quả thuật toán, biến đổi Fourier nhanh (FFT) được sử dụng để xử lý trước dữ liệu đo lường và giảm độ phức tạp tính toán.thuật toán hỗ trợ xử lý nhiều luồng để thực hiện tính toán thu thập dữ liệu và bù đắp song song.
Các thuật toán được tạo ra nguyên mẫu trong Python và sau đó tối ưu hóa và chuyển sang C để chạy trên một STM32F4.trong khi bộ phân tích mạng hỗ trợ độ phân giải tần số cao hơn (lên đến 10 MHz). Độ trễ xử lý của mô-đun bù đắp được giữ dưới 8,5 ms, đảm bảo hiệu suất thời gian thực.
Để phù hợp với các mô hình ESU khác nhau, hệ thống hỗ trợ quét đa tần số và điều chỉnh tham số tự động dựa trên cơ sở dữ liệu tính năng tải được đặt trước.một cơ chế phát hiện lỗi đã được thêm vàoKhi dữ liệu đo là bất thường (chẳng hạn như các thông số ký sinh trùng ngoài phạm vi dự kiến), hệ thống sẽ kích hoạt báo động và hiệu chuẩn lại.
Các thí nghiệm được thực hiện trong môi trường phòng thí nghiệm bằng cách sử dụng các thiết bị sau:
Trọng lượng thử nghiệm bao gồm các điện trở phim gốm và kim loại để mô phỏng các điều kiện tải khác nhau gặp phải trong phẫu thuật thực tế. tần số thử nghiệm là 1 MHz, 2 MHz, 3 MHz, 4 MHz,và 5 MHzNhiệt độ môi trường được kiểm soát ở 25 °C ± 2 °C và độ ẩm là 50% ± 10% để giảm thiểu sự can thiệp bên ngoài.
Các phép đo không bù cho thấy tác động của các tác động ký sinh gia tăng đáng kể theo tần số.Sau khi áp dụng bù đắp động, độ lệch trở giảm xuống còn 1,8% và sai pha giảm xuống còn 0,8 độ.
Thí nghiệm cũng kiểm tra sự ổn định của thuật toán dưới tải không lý tưởng (bao gồm cả dung lượng ký sinh trùng cao,Cp= 10pF). Sau khi bù đắp, lỗi được giữ trong phạm vi 2,4%.với độ lệch chuẩn nhỏ hơn 0.1%.
Bảng 1: Độ chính xác đo trước và sau khi bù
| tần số (MHz) | Lỗi cản không bù đắp (%) | Lỗi trở trở sau khi bù đắp (%) | Lỗi giai đoạn (Chi tiêu) |
|---|---|---|---|
| 1 | 4.9 | 0.7 | 0.4 |
| 2 | 7.5 | 0.9 | 0.5 |
| 3 | 9.8 | 1.2 | 0.6 |
| 4 | 12.2 | 1.5 | 0.7 |
| 5 | 14.8 | 1.8 | 0.8 |
Các thuật toán bù đắp có một tính toán phức tạp của O ((n), trong đó n là số tần số đo.đặc biệt là trong môi trường ồn ào (SNR = 20 dB). Thời gian phản ứng hệ thống tổng thể là 8,5 ms, đáp ứng các yêu cầu kiểm tra thời gian thực.phương pháp bù đắp động giảm thời gian đo bằng khoảng 30%, cải thiện hiệu quả thử nghiệm.
Phương pháp bù đắp năng động cải thiện đáng kể độ chính xác của thử nghiệm điện phẫu thuật tần số cao bằng cách xử lý tác dụng ký sinh trùng trong thời gian thực.So với hiệu chuẩn tĩnh truyền thống, phương pháp này có thể thích nghi với những thay đổi năng động trong tải và đặc biệt phù hợp với các đặc điểm cản phức tạp trong môi trường tần số cao.Sự kết hợp của các đồng hồ LCR và các máy phân tích mạng cung cấp khả năng đo lường bổ sung: Máy đo LCR phù hợp cho phép đo trở ngại nhanh, và các máy phân tích mạng hoạt động tốt trong phân tích thông số S tần số cao.việc áp dụng lọc Kalman cải thiện độ bền của thuật toán đối với tiếng ồn và thay đổi tải [4].
Mặc dù phương pháp này có hiệu quả, nhưng nó có những hạn chế sau:
Những cải tiến trong tương lai có thể được thực hiện theo những cách sau:
Bài báo này đề xuất một phương pháp bù đắp năng động dựa trên một đồng hồ LCR tần số cao hoặc máy phân tích mạng cho các phép đo chính xác trên 1 MHz cho các bộ kiểm tra điện phẫu thuật tần số cao.Thông qua mô hình cản thời gian thực và thuật toán bù đắp thích nghiCác kết quả thí nghiệm cho thấy rằng trong phạm vi 1 MHz đến 5 MHz,lỗi cản giảm từ 140,8% xuống còn 1,8%, và lỗi pha được giảm từ 9,8 độ xuống còn 0,8 độ, xác nhận hiệu quả và độ bền của phương pháp.
Nghiên cứu trong tương lai sẽ tập trung vào tối ưu hóa thuật toán, thích nghi dụng cụ chi phí thấp và ứng dụng trong phạm vi tần số rộng hơn.Tích hợp các công nghệ trí tuệ nhân tạo (như mô hình học máy) có thể cải thiện thêm độ chính xác ước tính tham số và tự động hóa hệ thốngPhương pháp này cung cấp một giải pháp đáng tin cậy cho kiểm tra đơn vị điện phẫu thuật tần số cao và có các ứng dụng lâm sàng và công nghiệp quan trọng.